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which is the same function as was obtained from the
“line length variation method.” Similarly, it can be
shown that when the two probes are at opposite ends
the result is identical, irrespective of whether the line
length or the frequency has been changed to obtain the
value of the Q factor.

The reason for this is that |i|g/‘1’]max =f(x) where
x=nw/(20Q) (nepers) which means that the correction
to be used in the Q-factor measurement is a function of
the total attenuation only, and therefore the same result
will be obtained by either method of measurement.

A Nonuniform Coaxial Line with an Isoperimetric
Sheath Deformation®

N. SESHAGIRIf

Summary—For impedance matching in transmission lines, non-
uniform lines, obeying laws of taper like the exponential, the Dolph-
Chebyshev etc., are used. For the nonuniform coaxial line, construc-
tional advantages can be derived for the same electrical performance
if it has a uniform circular inner conductor with an outer conductor
having an isoperimetric transition, from circular to elliptic cross
section, in conformity with the established laws of taper. This prob-
lem has been examined in the paper, and the required design for-
mulas as well as the design charts are developed. The effect of an
impedance and geometric discontinuity at the low-impedance junc-
tion of such a nonuniform line and the concentric circular uniform
line is discussed. The use of the isoperimetric transition line in
microwave components is indicated.

I. INnTRODUCTION
i§§ COMMON PROBLEM of systems design is im-

pedance matching. In coaxial transmission lines,

this presents difficulties associated with electri-
cal and mechanical design considerations. A solution to
the mechanical aspect of the problem has been attempted
by the use of nonuniform transmission lines, with a
variation of the diameter of either the inner or the outer
conductor satisfying the electrical requirements. The
latter approach is suggestive of an alternative method
wherein the outer conductor transforms isoperimetri-
cally from a circular cross section to an elliptic cross
section, the inner conductor being uniformly circular.
Mechanical advantages can be derived for the same elec-
trical performance if the increase of ellipticity is related
to the existing laws of transition. The proposed structure

* Received March 11, 1963; revised manuscript received July 23,
1963.

1 Department of Electrical Communication Engineering, Indian
Tnstitute of Science, Bangalore, India.

permits easy and continuous installation of any law of
taper. Thus, for instance, the difficulty encountered to
install the exponential law® or the Orlov's law? of taper
is not appreciably more than that for a linear taper. The
design can also be used for tapered terminations at
microwaves,® and in the design of microwave com-
ponents where work on the use of nonuniform lines has
been reported.**

To develop the required design formulas it is first
necessary to carry out the field analysis of infinitely
long uniform lines with a circular cylindrical inner con-
ductor surrounded by an elliptic outer conductor. Morse
and FeshbachS® give an expression for the case of an inner
conductor in the form of a thin wire. A similar analysis
can also be made using a Schwarz’s transformation.”
The requirement of the design considered in this paper
being that of an inner conductor whose radius is com-
parable to the dimensions of the ellipse, a different

1 C. R. Burrows, “The exponential transmission line,” Bell Sys.
Tech. J., vol. 17, pp. 555-573; October, 1938.

2 S. 1. Orlov, “Concerning the theory of non-uniform transmission
lines,” J. Tech. Phys. USSR, vol. 26, pp. 2361-2372; October, 1956.
(Translated by APS, vol. 1, pp. 2284-2294; October, 1957.)

3G, T. Clemens, “A tapered line termination at microwaves,”
Quart. J. Appl. Math., vol. 7, pp. 425-432; January, 1950.

¢ C. P. Womack, “The use of exponential transmission lines in
microwave components,” IRE TRANS. ON MICROWAVE THEORY AND
TecaNIQUES, vol. MTT-10, pp. 124-132; March, 1962.

5 R. N. Ghose, “Exponential transmission lines as resonators and
transformers,” IRE TraNs. oN MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-5, pp. 213-217; July, 1957.

5 P. M. Morse and H. Feshbach, “Methods of Theoretical Phys-
ics,” McGraw-Hill Book Co., Inc., New York, N. Y., p. 1203; 1953,

"H. A. Schwarz, “Notizia sulla rappresentazione conforme di
un'area ellittica sopra un’area circolare,” Annali di Matematica (II),
vol. 3, pp. 166-173; 1869.
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Fig. 1—Sketch showing the transformations and equivalence relations for the determination of the constants of the elliptic-circular line.

approach is made based on conformal transformations,
bi-polar coordinates, higher transcendental functions
and an impedance ratio equivalence.

The procedure followed in this paper for the actual
analysis is as follows. A half section of the infinite el-
liptic circular uniform line, bifurcated along the major
axis of the ellipse, has been conformally transformed into
a noncoaxial structure having a circular cylindrical
inner conductor with a displaced elliptic sheath of lesser
eccentricity than that of the original structure. The
capacitance of this transformed structure, and hence
that of the original half section, is obtained by a capaci-
tance ratio equivalence, evaluated using the bipolar co-
ordinate and a transformation involving the theta func-
tions and Jacobi's elliptic functions.

A similar method gives the external inductance of the
line. Expressions for the characteristic impedance and
the phase constant are consequential. Against this back-
ground, the design of the nonuniform line is treated as a
problem of finding the law of transition, for a given
variation of the characteristic impedance so that the
electrical performance of existing types of tapered lines,
so far as the reflection is concerned, is conserved. Charts
are developed for the design of the nonuniform sheath.

II. Line CONSTANTS

A half section of the infinite uniform transmission line
with a circular inner conductor and an elliptic sheath
having loss free dielectric and perfect conductors is
considered.

It is known that a complex plane transformation,?

W= 7, (1)

maps the half plane structure in the Z plane given in
Fig. 1(a) conformally into the full W plane, noncoaxial

8 R. V. Churchill, “Complex Variables and Applications,”
McGraw-Hill Book Co. Inc., New York, N. Y., p. 67; 1960.

in nature. Since only a half plane is considered initially,
mapping as on a Riemann surface is not considered;
and 1) also maps this region in the manner of a Schlicht
function. This structure of the outer conductor in the W
plane is an ellipse of lesser eccentricity, Fig. 1(b), than
the one initially considered, but there is a deviation in
the geometric center in the transformed case given by,

L= 5@ — %),

where @, and b, are respectively the semimajor and the
semiminor axes of the elliptic sheath in the Z plane. The
resulting structure, though it appears equally difficult
to deal with, by the nature of its ellipticity, facilitates
a capacitance ratio equivalence. From Figs. 1(b) and

1(c), if

|:C;,1 Cq:l
Cy' Cof
eccentric concentric
ellipse ellipse
= Capacitance between .
eccentric concentric
circle circle

and the inner conductor whose radius r; is comparable
to the dimension of the ellipse with axes a; and b1, then,
an equivalence

C,
EZL = Mo(ao,/ b, 70/50) F« (2)

by €1

may be considered. Since the capacitances are constant
for a given ae, bo and 7o, M, is also a constant, but it
may vary with (ay/bo) and (ry/b¢). In (2), Gy, the capaci-
tance of the half structure in the Z-plane, which is also
half the capacitance C of the full original structure, can
be found by evaluating ,/, C¢/, C., and M.
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The magnitude of Cp/ can be shown, using the bi-
polar coordinate,? to be

¢! = " : )
Cosh™ |:—-—a02b02 + 712:|
2a17¢
where
ar = 3(ap® + 5%,
71 = 792
Also,
C./ = e (4)
In (a1/71)

The capacitance C,, can be found by a successive trans-
formation,

P =W (3)
which up to an axis ratio of about 2.2 transforms the
half plane structure of Fig. 1(d) almost into eccentric

circular cylinders, the distance between their centers
being

er = 3(a:® — b1%),
where by is found as follows: Taking the square of the
radius vector at an angle of 45° in the Z plane gives
2a9%h?
as a point on the ellipse having the semimajor and the

semiminor diameters a; and by, respectively. Identifica-
tion of this point in the equation of the ellipse gives

€1

bl = aobu.

Incidentally, it follows that the center of the trans-
formed inner conductor in the W-plane is one of the
focuses of the ellipse. A similar procedure as adopted
for (3) vields

4me
Coy = ) (6)

Cosh—1 I:dllhz + fﬂz:l
0OS. T E—

2021’2

where, by the properties of the transformation (5),
re = 11?

and
a; = $(a:? 4+ b,2).

Mo in (2) can be evaluated by an approximate method
using the Schwarz's transformation involving theta and
elliptic functions.” A point to decide is the degree of

9 Morse and Feshbach,$ p. 1210.
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accuracy realized by the approximate method. For this
purpose, certain experiments were carried out using the
electrolytic tank and they will be described in the fol-
lowing. The index for the capacitance ratios of (2), con-
sidering electrode shapes similar to configurations of
Fig. 1(b) and 1(c), was taken as the ratio of tank cur-
rents. Carefully conducted experiments reveal that for
0<ao/bo<3.2 and 0<r¢/by<0.6, My does not deviate
from unity by more than about six per cent. But, the
above experiments also indicate that M, is more a func-
tion of (ao/bo) in the limit 0.1 <ry/by<0.6, than of
(ro/bo), and hence its value may be determined for the
case of an inner conductor in the form a of thin wire of
radius corresponding to the lower limit of (7o/by). Thus,

[Cb2 CCQ]
I4 I4
Cy, Co
eccentric concentric
. ellipse ellipse
= Capacitance between . .
eccentric concentric
circle circle

and the inner conductor in the form of a thin wire of
radius p,,. Considering a relation similar to (2),

Ch, Ce,
o = Mo(ao/bo, pi,/bo) ./

’ ()

[0, and p;, are defined by and subsequent to (12)]. But,
because of the above consideration implying the ap-
proximate independence of Ay with respect to the radius
of the inner conductor in the range 0.1 <7¢/by <0.6, and
also owing to the fact that we are ascertaining only a
quantity of a second order magnitude, viz., 1y, its value
for a given (ao/bo) in (2) and (7) are the same to within
about two per cent. (It may be restated that this ap-
proximation is intended to connect ratios of capacitances
only because the actual capacitances are very much
functions of 7o/bo.)

In (7) M, can be evaluated by determining the values
of the other parameters. Thus, as of (3),

c 2me ®)
by — S )

Cosh™* [ @b’ + pu? :'

zalpil
and as of (4),
2re
Coff = ———— 9
11’1 (a’l/pn)

Ce, and Cp, are evaluated from the transformations,

£(aq, bo)
w
2F (KO, —>
2

7r ’\/(102 - b02

= /Ko Sn
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and
E(a’h bl)
| or (Kl, %) . ]
— \/ESn'_ Sin_lﬁj , (1)

T ay" — 01°
where

_ 192(0‘ To) 2

h [03(0 | 7o) ]

X = [%‘3‘:2] y
8500 71)

¥, and ¥y stand for Theta functions'® having the Jacobi’s
parameters,

. ay — by ]2
o = exp (jrro) = [aﬁbj ,
and
. . . dl“bl 2
@1 = exp (jrr) = [a1+b1:| '

F(Ko, 7/2) and F(K;, 7/2) are Jacobi’s elliptic functions
of the first kind. Eq. (10) maps the interior of the full
structure of the ellipse corresponding to Fig. 1 (a) into
the interior of a unit circle. Let us consider

pe, = lesser of (0.1v/ay? — bo?, 0.1by). (12)

The circularity of the inner structure is very nearly pre-
served under the transformation when it is at the center.

aq 1
In{ — }1In — cosh™?
Piy Py
a1
ln(——
[

However, to obtain more precise information, the geo-
metric mean of the different distances from the center
of the transformed inner structure parallel to the &, and
£, axes in the £ plane, can be obtained from the proper-
ties of the transformation (10). This mean value is repre-
sented by p,’ and is evaluated from the charts and pro-

1
) In (——7) cosh™! <
Piy
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cedure given by Schwarz” with the help of tables of
transcendental functions.'* This gives for the trans-
formed structure corresponding to Fig. 1(b),

mEe
In (1/on/)

Similarly, from the transformation (11), and since from

(1),

(13)

Cy,

P = pifs
P4, satisfies the requirements of and subsequence to (12)
because

p, < lesser of (0.1v/a:2 — b2, 0.15)).

Thus, (11) applied to the elliptic outer structure and
circular inner structure of radius p,;, of Fig. 1(c) gives
the mean value as p;//, in a manner analogous to that of
p., s so that

2me
Copmm — e
In (1/pi1 )

Consequently, since all parameters in (2) except Cs, are
known,

(14)

2me

G

Cy, =

7

and for the full original structure

dre

= —G—‘ 7 (15)
where
@o?bo® - 71l a:2b:% + 7y?
—T—> cosh™! —‘2———
asr (1278
171 272 (16)

ap®by? + PHZ

Zdlpn

)

A further transformation, S= P? in conjunction with
a capacitance ratio equivalence used in the same man-
ner as Figs. 1(b)-1(e), extends the limit of the axis
ratio to about 2.8. The procedure can be continued
further and the general formula for G to include N
such operations, results. Thus,

1
In ( > In <——,>
Piryr P,

Qg1

arzbrz + 7'27--;-1 >] AfI
207+17’r+1 r=

|
oo

10 Ibid., pp. 430, 489.

! ]n(

; (7

Q. 1 arzbrz + P, z
DY (L Yo (202
Yrp1

Po,yy zar—HPi,H
1 E, Jahnke and F. Emde, “Tables of Functions with Formulae
and Curves,” Dover Publications, Inc., New York, N. Y., pp. 4145,
61-67; 1943.
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where
for r=1,2,---, N,
ar = %(0741 + br~1>7

br = (ar~1 ' br—l);

2
Yy = T'r—1,

2
er = plr—]?
and if
on,y pu/ = Fl; F2((10> bO: plo);

which is evaluated by the procedure following (10) and
(11), then

pi s Pzrﬂ/ = Iy, Fu(a,, by, pi)-

The method described above in determining the
capacitance is an indirect one and the analysis tends to
be approximate only while ascertaining the value of a
second order quantity, viz., Aly. Thus, the resultant
accuracy can be expected to be within about three per
cent. But a limitation to the use of (17) as a general
formula for G stems from the fact that f, itself is
governed by ao/bo and for a ratio greater than 3.2, the
desired accuracy to within three per cent is not realized.
Thus, N in (17) may be limited to 3.

For ao/by>4, 0<ry/by<0.6, it can be seen that the
capacitance of the structure depends mostly on by owing
to its proximity to the inner conductor, and hence the
outer conductor can be approximated to parallel planes.
Thus, for a similar order of accuracy as considered
above, the following known relation'*> may be used in
the range ao/bo>4,

4by

G = 2 In coth Ii—-:l (for, ro/by < 0.5).

w¥o

(18)

Fig. 2 gives the family of curves of G vs (ay/bo) with
(ro/by) as the parameter. For the range 0.5 <7,/b,<0.6
where (18) is not applicable, extrapolation is carried out
knowing the trends of the other neighboring curves and
they are shown in broken lines.

Similar to (15), it can be shown that the external in-
ductance per unit length

uG

16 = ’
4

(19)

1 being the permeability referred to the dielectric be-
tween the two conductors. Thus, the secondary con-
stants are

G /u
Zy(characteristic impedance) = 4? /‘/— s (20)
T €

(21)

B(Phase constant) = w+/eu,

w being the angular frequency.

2 W. G. Dow, “Fundamentals of Engineering Electronics,” John
Wiley and Souns, Inc., New York, N. Y., pp. 158-162; 1952.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

fo_
B;—O 16

4.0

a
=2

bo

Fig. 2—Curves giving the main parameter of the characteristic
impedance G for a given line cross section.

III. NonunNirForRM CoaAXIAL LINE WITH
ISOPERIMETRIC SHEATH TRANSITION

The main feature of the uniform line having been
established in the preceding section, an extension can
now be considered for the nonuniform line.

For the coaxial line, two methods are possible for
obtaining gradual and continuous impedance trans-
{ormation. One way is to taper the inner conductor,
while the other is to taper the outer. The methods of
realizing the latter type involve a variation of the perim-
eter of the sheath itself. If an impedance transformer is
possible wherein the inner conductor is straight, but
the sheath transforms isoperimetrically, mechanical and
constructional advantages can be realized. Fig. 3 shows
one such method wherein the transition from the circu-
lar coaxial to the circular or elliptic-circular coaxial line
is isoperimetric. In the following, the electrical design
aspects are first considered and a representative design
is illustrated. Then the mechanical design considera-
tions, with a view to elucidate some of the constructional
advantages, are indicated.

Electrical Design Considerations

Pierce®® has represented the nonuniform line by a first
order nonlinear differential equation in impedance in
the Riccati form. From the Fourier pair equations of
Bolinder!* derived from Pierce’s equation, it is possible
to determine the reflection coefficient as a function of
the wavenumber, where the variation of Z, is known
along the line. Thus, for the isoperimetric transition
line the electrical performance, so far as the reflection
coefficient is concerned, will be the same as for the one
whose impedance variation along the tapers is unaltered.

18 J. R. Pierce, “A note on the transmission line equation in terms
of impedance,” Bell Sys. Tech. J., vol. 22, pp. 263-265; July, 1943.

1 K. F. Bolinder, “Fourier transforms and tapered transmission
lines,” Proc. IRE, (Correspondence), vol. 44, p. 557; April, 1956.
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Isoperimetric

transition from Circular or
Circular circular coaxial to elliptic-circular
. . T . . . P . . —>
coaxial line elliptic-circular coaxial line
cross section
%m ! i
7% 77 772 7 T e 2 7 ,_?0 -
(2 bo)
. i = er-bo
Cross section of :;m: of Line of Cross section of
taper line at x=—- igh Zo low Zg L

2

taper line at x==-
2

Fig. 3—Sketch representing the proposed structure of the nonuniform line with isoperimetric sheath transition.

Because of this, the impedance relation derived for the
elliptic-circular case, the major and minor axis diam-
eters being treated as functions of x, (i.e., @y, and by,
respectively), can be equated to the impedance relations
derived for the various laws of taper in existing designs.

Table I gives equations for the sheath design for two
representative cases, viz.,, the exponential’® and the
Dolph-Chebyshev.'® Column two of this table gives the
necessary design identities for the transition of the
sheath from the circular coaxial high-impedance uni-
form line to the elliptic-circular or circular coaxial low
impedance line to give the already established relations
for reflection coethcients as given in column three.
Sufficiency of the design equations are obtained {rom the
following constraint resulting from the isoperimetric
nature of the transition:

Aoz = 27’3 - boz, (22)

where 7, is the sheath radius of the high-impedance uni-
form line. Design equations for the sheath can be
similarly obtained for the law resulting {rom Orlov’s
nonuniform line synthesis.® This law is also derived by
Sharpe!” by treating the analysis of a nonuniform line
as a one-dimensional scattering problem by converting
the line equations into an integral equation, by using
the appropriate Green’s function which vields a solution
on truncating the Fredholm series. The Orlov’s equa-
tions that result may be related to the tapers obtained
by Willis and Sinha!® for the matched line and its ex-
tension to the general case of arbitrary reflection co-
efficients by Cath.*®

A design chart is developed which directly gives the
dimensions for the nonuniform sheath. This chart re-
sults from the expression for G and (22) and is given in

15 R. E. Collin, “The optimum tapered transmission line matching
section,” Proc. IRE, vol. 44, pp. 539-548; April, 1956.

18 R, W. Klopfenstein, “A transmission line taper of improved
design,” Proc. IRE, vol. 44, pp. 31-35; January, 1956.

7 C. B. Sharpe, “An alternative derivation of Orlov's synthesis
formula for non-uniform lines,” Proc. IEE, Mono. No. 483 E;
November, 1961.

18 1, Willis and N. K. Sinha, “Non-uniform transmission lines as
impedance transformers,” Proc. IEE, Paper No. 1961 R, vol. 103B,
pp. 166-172; March, 1956.

19 P, G. Cath, “The synthesis of non-uniform transmission lines,”
Cooley Electronics Lab., Univ. of Michigan, Ann Arbor, Rept. No.
116; January, 1961.

Fig. 4. (Since ao/b cannot be less than unity, there is a
forbidden region for the curves which is indicated in the
figure.) For illustration, the profile of the outer conduc-
tor is designed for the exponential transition from 758
to 528). For a particular value of x, the right-hand side
of equations of Table I, column 2, can be enumerated.
This also gives the value of G(r./rs, Guz/box, 70/bos)-
Knowing (r,/7y) from the dimensions of the high im-
pedance uniform line, the value of (¢o/bo) can be read
off the curves of Fig. 4. Knowing G and (ao/bs) the
value of (ru/be) can be obtained from the curves of
Fig. 2. Thus, for a known 7., ry and x, ay and b, can be
determined. The profile so determined for the exponen-
tial line is compared with the profile of a conventional
design with a nonuniform inner conductor, of radius
7.(x), and constant sheath radius, 7, (Fig. 5).

Mechanical Considerations

To bring about the nature of the mechanical problem
that is confronted in the actual fabrication, a repre-
sentative technique for the construction of the non-
uniform line with the isoperimetric sheath deformation
will be sketched. It is known that by a rolling process
with the surface of revolution of an inverted half ellipse,
a plastic deformation from circular hollow cylinder to
an isoperimetric elliptic hollow cylinder can be obtained.
For the nonuniformity to be installed the pressure on
the rollers, with the solid of revolution corresponding to
the ellipse of the low impedance end of the nonuniform
line, need be varied as a function of x. Expressions for
the critical pressure of the plastic deformation can be
taken as those based on Southwell’s.?® The rollers of the
described shape conditions the deformations nearer an
ellipse than the plane rollers. For higher ellipticities the
parameter of importance deciding the characteristic im-
pedance is by and slight deviation from the shape of an
ellipse does not cause much change in the impedance.
The displacement of one of the rollers, the other being
fixed, is directed by the pressure applied to it and the
resistance offered by the hollow cylindrical sheath to
buckling. Knowing the parameters of the sheath, such
as the tangential modulus of the material, the shell

20 S, Timoshenko, “Strength of Materials,” McGraw-Hill Book
Co., New York, N. Y., pt. 2, pp. 186-190; 1956.
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TABLE I
Necessary design equation for circular . .
Type of transition coaxial to elliptic-circular coaxial Reflection coefficient Expansion of symbols
transition
Z, = Impedance at sending end
G(rs/ro, @os/boz, 70/b0s) SingL Z; = Impedance at receiving end
ia]ls g AT L = Total length of transition
Exponential : g
\ 8L x = Distance reckoned from
=dr 4§/ — er T In 7 1” ZIZ{I center of transition
Z 8= Phase constant
— 7 = Complex operator
, . A = Parameter which deter-
Glrs/ro, aos/bos, ro/bos) mines maximum magnitude
of reflection in pass band
=4r 4/ —exp [:—In (Z12s) + 6717 (Z, A) given by the tables of Klopf-
( ( ) ( / 0 9] enstein!
VAW Q2Z/L,A) + Ulx — L/2) — —x — L U = Unit step function
Dolph-Chebyshev's l / |a| <z/2 | Lewrin? <£°ii@l2;f) U@ =0if 220
PR _ . = 2 Z\" Cosh 4 —1iZ30
= 4rZ, 1/ e St
s 2
e L
= 47er — < — —
“ 2
Oofp 51 ©
. 12
L 4 (e -1
:
I 20 © 50,
22
3'0; Forbidden :: 045

region

G —

25+

2.0H
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»
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Fig. 4—Chart for the nonuniform sheath design.

thickness, the buckling properties and also the law of
variation of b¢. of the ellipse as a function of the length
along the non-uniform line, the pressure on the roller
can be programmed. A simple electromechanical con-
trol scheme is possible which compares the b,, measured
directly on the work with the bg, obtained from the
profile diagram similar to that of Fig. 5, and the differ-
ence of these two values is the index for correcting the
pressure on the rollers.

Some of the more important constructional features
of the isoperimetric transition are the following:

1) The deformation of the shape of the sheath can be
obtained by a “pressing into shape” operation and
hence there is no removal of metal.

2) The inner conductor is uniformly circular through-
out the length of the line.

Fig. 5—Comparison of the normalized profile diagrams of the pro-
posed design with an existing type for a 750 to 520 impedance
transformation based on exponential transition.

3)

4)

5)

Smooth and flawless deformations are possible
when (%/7,) is small, where % is the shell thickness.
Any law of the transition involving smooth and
continuous variation of the characteristic im-
pedance can be inscribed on it.

Sending end and receiving end lines may both be
circular coaxial if a discontinuity at the low im-
pedance junction described in the next section is
taken care of.

Against these advantages, there are also the following
disadvantages:

1)

2)

3)

The junction of the uniform circular coaxial line
and the nonuniform line at the low impedance
end enforce some difficulties because soldered and
butt joints are often inadmissible.

For higher ellipticities, geometric discontinuity
may excite spurious transmission modes.
Mounting of the inner conductor by structures
like the dielectric beads are not as flexible as in
circular coaxial transitions.
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IV. IsOPERIMETRIC LINE FOR IMPEDANCE
MATcHING IN UNIFORM LINES

When the isoperimetric sheath transition is used for
impedance matching in uniform lines, the following fea-
ture should be examined. Because of the elliptic nature
of the cross section at the low impedance end of the
nonuniform line the nature of its junction poses some
special considerations. The high impedance uniform line
and the high impedance end of the nonuniform line have
both the same cross section, v:z., concentric circles with
the same radius, and hence the junction is perfect. But
this is not the case at the low impedance junction which
is between an ellipse having the same circumference as
the high impedance line sheath and a circle whose cir-
cumference is different from that of this ellipse. Two
cases are discussed in the following.

1) If a small impedance discontinuity® can be toler-
ated, the uniform line can be circular coaxial having a
sheath radius equal to the minor axis of the ellipse.
Assuming that the nonuniform line tapers gradually,
the term contributing to the reflection mav be taken as,

b
G(L/g) -2 lnl: O(L/E)}

7o

pa = (23)

bozro

G(L/g) +21In I:—————:‘

7o

Here G(z/2 and bg(z /o are the values of G and bo, at the
low impedance end of the taper line. Further analysis of
the effect of this discontinuity may be treated for the
same impedance relations, as for one with a circular
sheath of radius

G(L/?.)

7y €X
(ry exp 5

stepping down to a radius of bg(z,2. This analysis is then
the same as the one dealt with by Marcuvitz.?? The
impedance discontinuity resulting in reflection given by
(23) is considerable in many designs, but this may be
reduced by alternate means. The low impedance end of
the nonuniform line may be so proportioned that the
minor axis of the ellipse is less than the radius of the
uniform line to such an extent that the characteristic
impedances become equal. In this case there is no im-
pedance discontinuity, thus mitigating reflection, but a

% For the purpose of the present paper the following terms are
defined or redefined: An impedance discontinuity is an abrupt
change in impedance which consequently calls for a change in the
size and/or shape of the cross-sectional geometries.

A geometric discontinuity is a change in the size and/or shape
of the cross-sectional geometries which may or may not be accom-
panied by a change in impedance.

A purely geometric discontinuity is a change in the size and/or
shape of the cross-sectional geometries without any change in im-
pedance.

2 N, Marcuvitz, “Wave Guide Handbook,” McGraw-Hill Book
Company Inc., New York, N. Y., p. 311; 1947.
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purely geometric discontinuity?! is present which when
considerable may initiate spurious transmission modes.
Taking note of these two requirements, the transition
as well as the discontinuities may be optimized. As an
example, in the Dolph-Chebyshev taper an impedance
discontinuity is introduced by Klopfenstein for a better
electrical performance. Hence, the ellipticity of the el-
lipse at the low impedance end may be proportioned to
include this necessary rise in impedance, while the rest
of the discontinuity may be geometrical.?!

2) As a special case the low impedance uniform line
itself may be of elliptic-circular cross section in which
case the junction is again perfect. The properties of such
a line and its merits and demerits over existing types of
uniform lines are under examination. The TEM wave
equation for such a uniform line is conveved in a sepa-
rate communication.

V. ISOPERIMETRIC LINE FUR
MicrowaveE COMPONENTS

The proposed taper line can also be utilized in micro-
wave components with considerable constructional ad-
vantage. Some of these applications are sketched below.

1) The exponential transmission line resonator is
known to have been employed in coaxial cavities of
RF amplifiers.*® Womack observes that exact exponen-
tial tapers for coaxial lines are difficult to construct,
and hence the advantages of shorter resonator lengths
and, consequently, less weight may not {ully justify the
increased production difficulties. The statement holds
good so far as the usual nonisoperimetric transition of
either the inner or the outer conductor. For the iso-
perimetric transition as dealt with here, the construc-
tional difficulties are the same whether it is for a linear
taper as dealt with by Womack or the actual exponential
taper, and both do not present as much difficulty as
the nonisoperimetric transitions. Thus, employing the
exponential taper itself, 30 to 40 per cent® shorter
length can be obtained than the corresponding uniform
line resonators at the same frequency, and about 15
per cent shorter than using the linear taper.

2) A complementary case to the preceding arises if a
convergent line is considered wherein the same per-
centage of an increase of length is obtained which is
worth reckoning at microwave frequencies where fabri-
cation difficulties may be encountered owing to too short
a length of the line.

3) The design can be adopted for tapered line termi-
nations at microwaves in the same way as was done by
Clemens? for the nonisoperimetric transition but with
better constructional advantage as described in section

ITI.

28 N. Seshagiri, “A uniform coaxial line with an elliptic-circular
cross-section,” this issue, page 549.
2 The values are based on those of Womack.*
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CoNcLUSION

1t has been shown in the paper that a nonuniform
coaxial transmission line having an isoperimetric sheath
deformation for impedance matching in uniform lines
or for use in microwave components can be designed.
It has also been shown that such a configuration can
yield an electrical performance corresponding to some
of the commonly adopted laws of taper. The new struc-
ture is believed to have certain distinct mechanical and
constructional advantages. A possible mechanical set-
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up, with its associated control equipment, for the con-
struction of such a line, is suggested. As this setup is
only representative, it is expected that further refine-
ments may entail a more economical and accurate con-
struction.
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Prototypes for Use in Broadbanding
Reflection Amplifiers®

W. J. GETSINGERT, MEMBER, IEEE

Summary—This paper tabulates, as functions of reflection gain
and ripple, the element values of negative-resistance terminated,
prototype, low-pass, lumped-element ladder networks of normalized
impedance and bandwidth. (The values are calculated using known
synthesis methods.) Next, it provides a technique for relating the
characteristics of any actual narrow-band, negative-resistance device
to the value of the prototype susceptive element adjacent to the
negative resistance. When an actual negative-resistance device has
been related to a prototype in this manner, the performance of the
device with one, two or three additional cascaded resonators can be
predicted from given graphs. This allows trade-offs among gain,
ripple, and bandwidth, within limits. Finally, the predicted per-
formance can be used with simple formulas and the table of prototype
element values to design suitable resonators to broadband the actual
amplifier. The tables and techniques of this paper are used success-
fully to broadband tunnel-diode, maser and parametric-amplifier
circuits.

This paper allows the practical engineer to estimate the broad-
banding potential of any given negative-resistance device and pro-
vides him with the proper element values to do so with only a few
very simple calculations required.

INTRODUCTION

N RECENT YEARS reflection-type, negative-
I[ resistance amplifiers have received considerable at-

tention. This has come about as a result of the in-
troduction of circulators and of solid-state devices that
are capable of presenting a negative resistance under
the proper conditions. Typically, such an amplifier
might consist of a negative resistance and an associated
resonating structure terminating one port of a circula-

* Received July 7, 1963.
1 Lincoln Laboratory, Massachusetts Institute of Technology,
Lexington, Mass. Operated with support from the U. S. Air Force.

tor. Assuming an ideal circulator to which the load and
generator resistances are matched, the mid-band gain
of the amplifier is determined by the ratio of the load
resistance to the negative resistance. The bandwidth of
the amplifier depends on the values of these resistances
and the slope parameter of the resonating structure. A
considerable improvement in the bandwidth of such an
amplifier can be achieved by appropriately placing one
or more additional resonating structures between the
circulator and the terminals of the negative resistance
(with its own resonating structure). Matthaei' has
shown how this can be done for varactor-diode paramet-
ric amplifiers, while Kyhl, McFarlane and Strandberg?
have demonstrated the use of an additional cavity to
broaden the bandwidth of the cavity maser. While these
references consider broadbanding from the point of
view of the specific negative-resistance device employed,
this paper considers the broadbanding of a very simple
prototype device and discusses how to relate this proto-
type to any particular negative-resistance device. The
results are applicable to many kinds of negative-resist-
ance devices, yet only to the extent that they can be
reasonably related to the prototype.

Design relations for broadbanding ideal negative-
resistance devices (capacitance and negative-resistance
in parallel) have previously been given for both maxi-

1 G. L. Matthaei, “A study of the optimum design of wide-band
parametric amplifiers and up-converters,” IRE Trans. oN MICRO-
WAVE THEORY AND TECHNIQUES, vol. MTT-9, pp. 23-38; January,
1961.

2 R. L. Kyhl, R. A. McFarlane, and M. W. P. Strandberg, “Nega-
tive L and C in solid-state masers,” Proc. IRE, vol. 50, pp. 1608-
1623; July, 1962.



