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and which is the same function as was obtained from the

‘in[+f’(%i)l=‘sin;=‘sin’”’
“line length variation method. ” Similarly, it can be

shown that when the two probes are at opposite ends

the result is identical, irrespective of whether the line

length or the frequency has been changed to obtain the
and

value of the Q factor.

2TIO n

=6’’(’’+)=%’+)=2’

The reason for this is that I i I ~/ I il ~=x =j”(x) where
2@(fQ) = ~ = nm/ (2Q) (nepers) which means that the correction

IV, I COS2X + cosh 2y

to be used in the Q-factor measurement is a function of

l’~1 ‘—
the total attenuation only, and therefore the same result

I 20 I ~(sin’2X+sinh’2y)
will be obtained by either method of measurement.

A Nonuniform Coaxial Line with an Isoperimetric

Sheath Deformation*

N. SESHAGIRI~

Summary—For impedance matching in transmission lines, non-

uniform lines, obeying laws of taper like the exponential, the Dolph-

Chebyshev etc., are used. For the nonuniform coaxial line, construc-

tional advantages can be derived for the same electrical performance

if it has a uniform circular inner conductor with an outer conductor

having an isoperimetric transition, from circular to elliptic cross

section, in conformity with the established laws of taper. This prob-

lem has been examined in the paper, and the required design for-

mulas as well as the design charts are developed. The effect of an

impedance and geometric discontinuity at the low-impedance junc-

tion of such a nonuniform line and the concentric circular uniform

line is discussed. The use of the isoperimetric transition line in

microwave components is indicated.

I. INTRODUCTION

A CONIMON PROBLEl\I of systems design is im-

pedance matching. In coaxial transmission lines,

this presents difficulties associated with electri-

cal and mechanical design considerations. A solution to

the mechanical aspect of the problem has been attempted

by the use of nonuniform transmission lines, with a

variation of the diameter of either the inner or the outer

conductor satisf~-ing the electrical requirements. The

latter approach is suggestive of an alternative method

wherein the outer conductor transforms isoperimetri-

cally from a circular cross section to an elliptic cross

section, the inner conductor being uniformly circular.

Mechanical advantages can be derived for the same elec-

trical performance if the increase of ellipticity is related

to the existing laws of transitic,n. The proposed structure
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permits easy and continuous installation of any law of

taper. Thus, for instance, the difficulty encountered to

install the exponential lawl or the Orlov’s law2 of taper

is not appreciably more than that for a linear taper. The

design can also be used for tapered terminations at

microwaves,3 and in the design of microwave com-

ponents where work on the use of nonuniform lines has

been reported.~’5

To develop the required design formulas it is first

necessary to carry out the field analysis of infinitely

long uniform lines with a circular cylindrical inner con-

ductor surrounded by an elliptic outer conductor. Morse

and Feshbachb give an expression for the case of an inner

conductor in the form of a thin wire. A similar analysis

can also be made using a Schwarz’s transformation.7

The requirement of the design considered in this paper

being that of an inner conductor whose radius is com-

parable to the dimensions of the ellipse, a different

‘ C. R. Burrows, “The exponential transmission line, ” Bell ,Sy~.
Tech. J., vol. 17, pp. 555–573; October, 1938.

2 S. 1. Orlov, “Concerning the theory of non-uniform transmission
lines, ” J. Tech. Phys. USSR, vol. 26, pp. 2361–2372; October, 1956.
(Translated by APS, vol. 1, pp. 2284-2294; October, 1957.)

3 G. T. Clemens, “A tapered line termination at microwaves, ”
Quart. J. Appl. Math., vol. 7, pp. 425-432; January, 1950.

4 C. P. Womack, “The use of exponential transmission lines in
microwave components, ” IRE TRANS. oiw MICROWAVE THEORY AND
TECHNIQUES, vol. 1MTT-10, pp. 124–132; March, 1962.

5 R. N. Ghose, ‘(Exponential transmission lines as resonators and
transformers, ” IRE TRAM. ON MICROWAVE THEORY AND TECH-
NIQUES, VO1. MTT-5, pp. 213–217; July, 1957.

c P. M. Morse and H. Feshbach, “Methods of Theoretical Ph ys-
ics, ” McGraw-Hill Book C?., Inc., New York, N. Y., p. 1203; 1953.

7 H. A. Schwarz, “Notlzla sulla rappresentazione conforme di
un ‘area ellittica sopra un’area circolare, ” A nnazi di Matematica (11),
VO1. 3, pp. 166–173; 1869.
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Fig. l—Sketch showing the tran~formation~ ~lld ~quivalellce ~e]atioll~ for the determination of the ~onst:~llt~ of the elliptic-circular ]il]e.

approach is made based on conforrnal transformations,

hi-polar coordinates, higher transcendental functions

and an impedance ratio equivalence.

The procedure followed in this paper for the actual

analysis is as follows, A half section of the infinite el-

liptic circular uniform line, bifurcated along the major

axis of the ellipse, has been conformably transformed into

a noncoaxial structure having a circular cylindrical

inner conductor with a displaced elliptic sheath of lesser

eccentricity than that of the original structure. The

capacitance of this transformed structure, and hence

that of the original half section, is obtained by a capaci-

tance ratio equivalence, evaluated using the bipolar co-

ordinate and a transformation involving the theta func-

tions and Jacobi’s elliptic functions.

A similar method gives the external inductance of the

line. Expressions for the characteristic impedance and

the phase constant are consequential. Against this back-

ground, the design of the nonuniform line is treated as a

problem of finding the law of transition, for a given

variation of the characteristic impedance so that the

electrical performance of existing types of tapered lines,

so far as the reflection is concerned, is conserved. Charts

are developed for the design of the nonuniform sheath.

II. LINE CONSTANTS

A half section of the infinite uniform transmission line

with a circular inner conductor and an elliptic sheath

having loss free dielectric and perfect conductors is

considered,

It is known that a complex plane transformations

W = z’, (1)

maps the half plane structure in the Z plane given in

Fig. 1 (a) conformably into the full W plane, noncoaxial

8 R. V. Churchill, ‘(Complex Variables and Applications, ”
McGraw-Hill Book Co. Inc., New York, N. Y., p. 67; 1960.

in nature. Since only a half plane is considered initially,

mapping as on a Riemann surface is not considered;

and 1) also maps this region in the manner of a Schlicht

function. This structure of the outer conductor in the W

plane is an ellipse of lesser eccentricity, Fig. 1 (b), than

the one initially considered, but there is a deviation in

the geometric center in the transformed (case given b>-,

e, = +(aoz — ~oz),

where ao and b. are respectively the sernirnajor and the

semiminor axes of the elliptic sheath in the Z plane. The

resulting structure, though it appears equally diflicult

to deal with, by the nature of its ellipticity, facilitates

a capacitance ratio equivalence. From Figs. 1 (b) and

1 (c), if

[2 ::1

[
ec~entric concentric
elhpse ellipse

= Capacitance between

1
e$centric concentric ‘
cmcle cucle

and the inner conductor whose radius VI is comparable

equivalence

Cb,
—. = $’o(aoj’~o, ro/17u) ?; ~

cb,’ cc{

to the dimension of the ellipse with axes al and bl, then,

an

(2)

may be considered. Since the capacitances are constant

for a given a~, bo and rO, fUO is also a constant, but it

may vary with (ao/’b O) and (ro/bo). In (2), Cb,, the capaci-

tance of the half structure in the Z-plane, which is also

half the capacitance C of the full original structure, can

be found by evaluating Cb(, C,;, C., and ~[u.
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The magnitude of cbl’ can be shown, using the bi-

polar coordinate, g to be

where

al = *(aog + bo~),

Also,

(4)

The capacitance CC, can be found by a successive trans-

formation,

P = w’, (5)

which up to an axis ratio of about 2.2 transforms the

half plane structure of Fig. 1 (d) almost into eccentric

circular cylinders, the distance between their centers

being

e2 = +(u12 — 612),

where bl is found as follows: Taking the square of the

radius vector at an angle of 45° in the Z plane gives

2aa2b02
el,

ao2 + boz

as a point on the ellipse having the semimajor and the

semiminor diameters al and bl, respectivel}-. Identifica-

tion of this point in the equation of the ellipse gives

Incidentally, it follows that the center of the trans-

formed inner conductor in the W-plane is one of the

focuses of the ellipse. A similar procedure as adopted

for (3) yields

k
c., =

cOsh-*[2b::2”’21’“)
where, by the properties of the transformation (5),

r2 = rl~

and

az = ~(alz + b12).

Jffi in (2) can be evaluated by an approxim ate method

using the Schwarz’s transformation involving theta and

elliptic functions. 7 A point to decide is the degree of

9 Morse and Feshbach,c p. 1210,

accuracy realized by the approximate method. For this

purpose, certain experiments were carried out using the

electrolytic tank and they will be described in the fol-

lowing. The index for the capacitance ratios of (2), con-

sidering electrode shapes similar to configurations of

Fig. 1 (b) and 1 (c), was taken as the ratio of tank cur-

rents. Carefully conducted experiments reveal that for

O <ao/bo <3.2 and O <rO/bO<O.6, MO does not deviate

from unity by more than about six per cent. But, the

above experiments also indicate that MO is more a func-

tion of (a O/bO) in the limit 0.1 <rO/bo <0.6, than of

(~O/b~), and hence its value may be determined for the

case of an inner conductor in the form a of thin wire of

radius corresponding to the lower limit of (ro/bo). Thus,

[

ec~entric concentric
elhpse elhpse

= Capacitance between
e~centric concentric
circle circle 1

and the inner conductor in the form of a thin wire of

radius p,,. Considering a relation similar to (2),

Cb, c.,

— = Tfdqh, dh) ~‘
cb,’ Cp

(7)

[P,, and pi, are defined by and subsequent to (12) ]. But,

because of the above consideration implying the ap-

proximate independence of 110 with respect to the radius

of the inner conductor in the range 0.1 <rO/b O<0.6, and

also owing to the fact that we are ascertaining only a

quantity of a second order magnitude, viz., hfo, its value

for a given (aO/bO) in (2) and (7) are the same to within

about two per cent. (It may be restated that this ap-

proximation is intended to connect ratios of capacitances

only because the actual capacitances are very much

functions of ~0/bij.)

In (7) MO can be evaluated by determining the values

of the other parameters, Thus, as of (3),

27re
Cb,’ = — —)

[

ao’boz + pf12
Cosh–t

2alPi, 1
and as of (4),

2n-E
cc,’ =

in (al/PL,)

(8)

(9)

C., and C6$ are evaluated from the transformations,

:(aO, h)

[()2F Ko, ;

= 4F0 Sn

z

sin–l
1~ao2 – bo2 ‘

(lo)
7r
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and cedure given by SchwarzT with the help of tables of

~(al, bl) transcendental functions. 11 This gives for the trans-

formed structure corresponding to Fig. 1 (b),

= ~z~,,[ 2F@”i) W ] Cb, = ‘e , (13)
sin–l

~al~ – 61Z ‘
(11) In (l/Pt/)

7r

Similarly, from the transformation (1 1), and since from
where /4\

(1),

Pil = Pi~2,

pi, satisfies the requirements of and subsequence to (12)

because

p,, < lesser of (O.l{alz – blz, O.lbj).

& and& stand for Theta functions’” having the Jacobi’s
Thus, (11) applied to the elliptic outer structure and

parameters,
circular inner structure of radius p%,, of Fig. 1 (c) gives

[1
au—ho ~

qO = exp (j7rTo) = —
a“+bu ‘

and

[1
al—bl z

qI = exp (jTT1) = —
al+bl “

F(Ko, 7r/2) and F(KI, 7r/2) are Jacobi’s elliptic functions

of the first kind. Eq. (10) maps the interior of the full

structure of the ellipse corresponding to Fig. 1 (a) into

the interior of a unit circle. Let us consider

P,, = lesser of (0.lVaO’ – b~, O.lbO). (12)

The circularity of the inner structure is very nearly pre-

served under the transformation when it is at the center.

the mean value as pi,’, in a manner analogous to that of

p,{, so that

‘Te
c., =

in (l/pi/) ‘
(14)

consequently, since d parameters in (2) except Cbl are

known,

and for the full original structure

-h-e
C= —G–,

where

(15)

~=1n(z)1n(2)c0sh-’(a02biaL’12)c0sh-1(a’’bf2‘“)
(16)

However, to obtain more precise information, the geo-

metric mean of the different distances from the center

of the transformed inner structure parallel to the $. and

$. axes in the $ plane, can be obtained from the proper-

ties of the transformation (10). This mean value is repre-

sented by p,.’ and is evaluated from the charts and pro-

/ ‘2alpi1 /

A further transformation, S= P’ in conjunction with

a capacitance ratio equivalence used in the same man-

ner as Figs. 1 (b)–l (e), extends the limit of the axis

ratio to about 2.8. The procedure can be continued

further and the general formula for G t.o include N

such operations, results. Thus,

G= Ii[cosh-
~=”

-1

(

‘43%3
!i5’n(:)cOsh-l(aRIT’)I7 (17)

11E. Jahnke and F. Erode, “Tables of Functions with Formulae
and Curves, ”

10 Ibid., pp. 430, 489.
Dover Publications, Inc., New York, N. Y., pp. 41-45,

61-67 ; 194.3.
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where

forr=l,2, . . .. IV.

a, = +(a,–1 + b,–1),

br = (ar–l cb,–J,

2
?’Y = r,–~,

Ph. = A-,,2

and if

p,,’, p,,’ = F1, FZ(a~, h, P,,),

which is evaluated by the procedure following (10) and

(11), then

pi.’, P,r+l’ = Fl, F~(a,, L Pi,).

The method described above in determining the

capacitance is an indirect one and the analysis tends to

be approximate only while ascertaining the value of a

second order quantity, viz., MO. Thus, the resultant

accuracy can be expected to be within about three per

cent. But a limitation to the use of (17) as a general

formula for G stems from the fact that MO itself is

governed by aO/bO and for a ratio greater than 3.2, the

desired accuracy to within three per cent is not realized.

Thus, N in (17) may be limited to 3.

For a,/bO>4, O <rO/bO<O.6, it can be seen that the

capacitance of the structure depends mostly on ba owing

to its proximity to the inner conductor, and hence the

outer conductor can be approximated to parallel planes.

Thus, for a similar order of accuracy as considered

above, the following known relationlz may be used in

the range aO/bo >4,

[1G=2 in coth ~ (for, rO/bO < 0.5). (18)
7?’0

Fig. 2 gives the famil>- of curves of G vs (ao/bO) with

(ro/bo) as the parameter. For the range 0.5 <rO/bO <0.6

where (18) is not applicable, extrapolation is carried out

knowing the trends of the other neighboring curves and

they are shown in broken lines.

Similar to (15), it can be shown

ductance per unit length

I,=E,

47r

p being the permeability referred

tween the two conductors. Thus,

stants are

Zo(characteristic impedance)

@(Phase constant)

u being the angular frequency.

that the external in-

(19)

to the dielectric be-

the secondary con-

——— W/w, (21)

12w. G. Dow, “Fundamentals of Engineering Electronics, ” John
Wiley and Sons, Inc., New York, N. Y., pp. 158-162; 1952.

4.0 -
- 019

35 -

3.0 -

t
w

- 0.34

2.5

0.46
2.0 0.49

Fig. 2—Curves giving the main parameter of the characteristic
impedance G for a given line cross section.

111, NONUNIFORM COAXIAL LINE WITH

ISOPERIMETRIC SHEATH TRANSITION

The main feature of the uniform line having been

established in the preceding section, an extension can

now be considered for the nonuniform line.

For the coaxial line, two methods are possible for

obtaining gradual and continuous impedance trans-

formation. One way is to taper the inner conductor,

while the other is to taper the outer. The methods of

realizing the latter type involve a variation of the perim-

eter of the sheath itself. If an impedance transformer is

possible wherein the inner conductor is straight, but

the sheath transforms isoperimetrically, mechanical and

constructional advantages can be realized. Fig. 3 shows

one such method wherein the transition from the circu-

lar coaxial to the circular or elliptic-circular coaxial line

is isoperimetric. In the following, the electrical design

aspects are first considered and a representative design

is illustrated. Then the mechanical design considera-

tions, with a view to elucidate some of the constructional

advantages, are indicated.

Electrical Design Considerations

Pierce13 has represented the nonuniform line by a first

order nonlinear differential equation in impedance in

the Riccati form. From the Fourier pair equations of

Bolinder’4 derived from Pierce’s equation, it is possible

to determine the reflection coefficient as a function of

the wavenumber, where the variation of ZO is known

along the line. Thus, for the isoperimetric transition

line the electrical performance, so far as the reflection

coefficient is concerned, will be the same as for the one

whose impedance variation along the tapers is unaltered.

13J. R. Pierce, “A note on the transmission line equation in terms
of impedance, ” Bell Sys. Tech. J., vol. 22, pp. 263-265; July, 1943.

14E. F. Bolinder, “Fourier transforms and tapered transmission
lines, ” PROC. IRE, (Correspondence), vol. 44, p. 557; April, 1956.
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Fig. 3—Sketch representing the proposed +,tructure of the nonuniform line with isoperimetric sheath transition.

Because of this, the impedance relation derived for the

elliptic-circular case, the major and minor axis diame-

ters being treated as functions of x, (i. e., a~z and bo~,

respectively), can be equated to the impedance relations

derived for the various laws of taper in existing designs.

Table I gives equations for the sheath design for two

representative cases, viz., the exponentially and the

Dolph-Chebyshev.’G Column two of this table gives the

necessary design identities for the transition of the

sheath from the circular coaxial high-impedance uni-

form line to the elliptic-circular or circular coaxial low

impedance line to give the already established relations

for reflection coefficients as given in column three.

Sufficiency of the design equations are obtained from the

following constraint resulting from the isoperimetric

nature of the transition:

where r. is the sheath radius of the high-impedance urli-

form line. Design equations for the sheath can be

similarly obtained for the law resulting irom Orlov’s

nonuniform line syrrthesis. z This law is also derived by

Sharpe17 by treating the anal}-sis of a nonuniform line

as a one-dimensional scattering problem by converting

the line equations into an integral equation, by using

the appropriate Green’s function which yields a solution

on truncating the Fredholm series. The Orlov’s equa-

tions that result may be related to the tapers obtained

by Willis and Sinha18 for the matched line and its ex-

tension to the general case of arbitrary reflection co-

efficients by Cath.lg

A design chart is developed which directly gives the

dimensions for the nonuniform sheath. This chart re-

sults from the expression for G and (22) and is given in

15 R. E. Collili, ‘(The optimum tapered transmission line matching
section, ” PI<OC. IRE, vol. 44, pp. 539-548; April, 1956.

‘e R. tl’. Klopfenstein, “A transmission line taper of improved
design, ” PItoc. IRE, vol. Q, pp. 31–35; January, 1956.

“ C. B. Sharpe, “An alternative clerivatiuu of Orlo~-’s synthesis
formula for non-uniform lines, ” I>rOC. IEE, Mono. No. +83 E;
N-ovember, 1961.

18J. Willis and N. K. Sinha, “Non-uniform transmission lines as
imr3edance transformers. ” PIOC. lEE. PaDer No. 1961 R, vol. 103B,,.
ppl 166-172; March, 1956.

lg P. G. Cath,, “The synthesis of non-uniform transmission lines, ”
Cooley Electromcs Lab., Univ. of lbIichigan, Ann Arbor, Rcpt. No.
116; January, 1961.

Fig. 4. (Since ao/60 cannot be less than unity, there is a

forbidden region for the curves which is indicated in the

figure.) For illustration, the profile of the outer conduc-

tor is designed for the exponential transition from 75Q

to 52Q. For a particular value of x, the right-hand side

of equations of Table I, column 2, can be enumerated.

This also gives the value of G(r,,/~0, UO./bOc, Yo/boz).

Knowing (r,/r,) from the dimensions of the high im-

pedance uniform line, the value of (a~/tlO) can be read

off the curves of Fig. 4. Knowing G and (ao/bo) the

value of (ro/b O) can be obtained from the curves of

Fig. 2. Thus, for a known r,, ~. and x, a,l and bO can be

determined. The profile so determined fclr the exponen-

tial line is compared with the profile of a conventional

design with a nonuniform inner conductor, of radius

v,(x), and constant sheath radius, r, (Fig. 5).

Mechanical Considerations

To bring about the nature of the mechanical problem

that is confronted in the actual fabric ai:ion, a repre-

sentative technique for the construction of the non-

uniform line with the isoperimetric sheath deformation

will be sketched. It is known that by a rolling process

with the surface of revolution of an inverted half ellipse,

a plastic deformation from circular hollow cylinder to

an isoperimetric elliptic hollow cylinder can be obtained.

For the nonuniformity to be installed the pressure on

the rollers, with the solid of revolution corresponding to

the ellipse of the low impedance end of the nonuniform

line, need be varied as a function of x. Expressions for

the critical pressure of the plastic deformation can be

taken as those based on Southwell’s. 20 The rollers of the

described shape conditions the deformations nearer an

ellipse than the plane rollers. For higher ellipticities the

parameter of importance deciding the clI aracteristic im-

pedance is b. and slight deviation from the shape of an

ellipse does not cause much change in the impedance,

The displacement of one of the rollers, the other being

fixed, is directed by the pressure applied to it and the

resistance offered by the hollow cylindrical sheath to

buckling. Knowing the parameters of the sheath, such

as the tangential modulus of the material, the shell

20S. Timoshenko, “Strength of Materials, ” McGraw-Hill Book
Co., New York, N. Y., pt. 2, pp. 186-190; 1956.
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TABLE I

November

Type of transition

Exponentialls

Dolph-Chebyshev 16

Necessary design equation for circular
coaxial to elliptic-circular coaxial

transition
—— —

G(v,/ro, ao./bo~, rO/boJ

3.5

!

3.0}

t“ 2.5 -

2.0 -

1.5

1

~jb:] 0

14
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18
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24
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38

Reflection coefficient I Expansion of symbols

I

l.o~
2 3 4 5 6

Fig. 4—Chart for the nonuniform sheath design.

thickness, the buckling properties and also the law of

variation of boa of the ellipse as a function of the length

along the non-uniform line, the pressure on the roller

can be programmed. A simple electromechanical con-

trol scheme is possible which compares the bo. measured

directly on the work with the boz obtained from the

profile diagram similar to that of Fig, 5, and the differ-

ence of these two values is the index for correcting the

pressure on the rollers.

Some of the more important constructional features

of the isoperimetric transition are the following:

1) The deformation of the shape of the sheath can be

obtained by a “pressing into shape” operation and

hence there is no removal of metal.

2) The inner conductor is uniformly circular through-

out the length of the line.

1 Z, Sin pL

()
~ ~–]~L In _ —__

Z, @L

2, = Impedance at sending end
Zz = Impedance at receivi:g end
L = Total length of transition
* = Distance reckoned from

center of transition
~ = Phase constant
y = Complex operator

A = Parameter which deter-
mines maximum magnitude
of reflection in pass band

@(Z, A ) given by the tables of Klopf-
ensteinlc

1
——

(
U = Unit step function

)

z’ Cos ~@L)%-A2 U(Z)= Oif Z<O— ~–?ln In — ———————
2 21 Cosh .4 =lif ZzO

I

L/2) ] ]

~ L/2

L

050-

t
045

t
22

~., ~. ,“ A
0.40 -

18

035
14

0.30

v 2.21
-0s -04

110
’03 -02 -0.1 0 01 02 03 04 05

—:—

Fig. 5—Comparison of the normalized profile diagrams of the pro-
posed design with an existing type for a 75!1 to 52Q impedance
transformation based on exponential transition.

3)

4)

5)

Smooth and flawless deformations are possible

when (h/r,) is small, where h is the shell thickness.

Any law of the transition involving smooth and

continuous variation of the characteristic im-

pedance can be inscribed on it.

Sending end and receiving end lines may both be

circular coaxial if a discontinuity at the low im-

pedance junction described in the next section is

taken care of.

Against these advantages, there are also the following

disadvantages:

1)

2)

3)

The junction of the uniform circular coaxial line

and the nonuniform line at the low impedance

end enforce some difficulties because soldered and

butt joints are often inadmissible,

For higher ellipticities, geometric discontinuity

ma~- excite spurious transmission modes.

Mounting of the inner conductor by structures

like the dielectric beads are llOt as flexible as in

circular coaxial transitions.
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IV, ISOPERIMETRIC LINE FOR lMPEDANCE

hfATCHING IN UNIFORM LINES

When the isoperimetric sheath transition is used for

impedance matching in uniform lines, the following fea-

ture should be examined. Because of the elliptic nature

of the cross section at the low impedance end of the

nonuniform line the nature of its junction poses some

special considerations. The high impedance uniform line

and the high impedance end of the nonuniform line have

both the same cross section, viz., concentric circles with

the same radius, and hence the junction is perfect. But

this is not the case at the low impedance junction which

is between an ellipse having the same circumference as

the high impedance line sheath and a circle whose cir-

cumference is different from that of this ellipse. Two

cases are discussed in the following.

1) If a small impedance discontinuityzl can be toler-

ated, the uniform line can be circular coaxial having a

sheath radius equal to the minor axis of the ellipse.

Assuming that the nonuniform line tapers gradually,

the term contributing to the reflection may be taken as,

(23)

Here G(L/zl and bO(Liq are the values of G and bo~ at the

low impedance end of the taper line. Further analysis of

the effect of this discontinuity may be treated for the

same impedance relations, as for one with a circular

sheath of radius

G(L12)
(70exp —

2)

stepping down to a radius of bofL,zJ. This analysis is then

the same as the one dealt with by fiTarcuvitz. z2 The

impedance discontinuity resulting in reflection given by

(23) is considerable in many designs, but this may be

reduced by alternate means. The low impedance end of

the nonuniform line may be so proportioned that the

minor axis of the ellipse is less than the radius of the

uniform line to such an extent that the characteristic

impedances become equal. In this case there is no iln-

pedance discontinuity, thus mitigating reflection, but a

21For the purpose of the present paper the fcdkmriug terms are

defined or redefined: An impedance discontinuity is an abrupt
change in impedance which cousequeutly calls for a change in the
size and/or shape of the cross-sectional geometries.

..1 geometric discontinuity is a chauge in the size and/or shape
of the cross-sectional geometries which may or may not be accom-
panied by a change in impedance.

.1 purely geometric discontinuity is a change in the size and/or
shape of the cross-sectional geometries without any change in im-
pedance.

22N. Marcuvitz, ‘Wave Guide Handbook, ” McGraw-Hill Book
Company Iuc., New York, N. Y., p. 311; 1947.

purely geometric discontinuity’ is present which when

considerable may initiate spurious transmission modes.

Taking note of these two requirements, the transition

as well as the discontinuities may be optimized. As an

example, in the Dolph-Chebyshev taper an impedance

discontinuity is introduced by Klopfenstein for a better

electrical performance. Hence, the ellipticity of the el-

lipse at the low impedance end may be proportioned to

include this necessary rise in impedance, while the rest

of the discontinuity may be geometrical. zl

2) As a special case the low impedance uniform line

itself may be of elliptic-circular cross section in which

case the junction is again perfect. The properties of such

a line and its merits and demerits over e<isting types of

uniform lines are under examination. The TEM wave

equation for such a uniform line is conveyed in a sepa-

rate communication. z3

V. ISOPERIMETRIC LINR FUR

MICROWAVE COMPONENTS

The proposed taper line can also be utilized in micro-

wave components with considerable con structional ad-

vantage. Some of these applications are sketched below.

1) The exponential transmission line resonator is

known to have been employed in coa~ial cavities of

RF amplifiers. 4,5 Wlolnack observes that exact exponen-

tial tapers for coaxial lines are difficult to construct,

and hence the advantages of shorter resonator lengths

and, consequently, less weight may not fully justify the

increased production difficulties, The statement holds

good so far as the usual nonisoperimetric transition of

either the inner or the outer conductor. For the iso-

perimetric transition as dealt with here, the construc-

tional difficulties are the same whether it is for a linear

taper as dealt with by Womack or the actual exponential

taper, and both do not present as much difficulty as

the nonisoperimetric transitions. Thus, employing the

exponential taper itself, 30 to 40 per centz~ shorter

length can be obtained than the corresponding uniform

line resonators at the same frequency,, and about 15

per cent shorter than using the linear taper.

2) A Colnplementary case to the preceding arises if a

convergent line is considered wherein the same per-

centage of an increase of length is obtained which is

worth reckoning at microwave frequencies where fabri-

cation difficulties may be encountered owing to too short

a length of the line.

3) The design can be adopted for tapered line termi-

nations at microwaves in the same way as was done by

Clemens3 for the nonisoperirnetric transition but with

better constructional advantage as described in section

III.

23N. Seshagiri, “.4 uniform coaxial line with au elliptic-circular
cross-section, ” this issue, page 5+9.

24 ‘rhe “a[ue~ are based on those of \Vomack, i
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CONCLUSION

It has been shown in the paper that a

ON MICROWAVE THEORY AND TECHNIQUES November

up, with its associated control equipment, for the con-

nonuniform struction of such a line, is suggested. As this setup is

coaxial transmission line having an isoperimetric sheath
only representative, it is expected that further refine-

deforrnation for impedance matching in uniform lines
ments may entail a more economical and accurate con-

or for use in microwave components can be designed.
struction.

It has also been shown that such a configuration can

yield an electrical performance corresponding to some
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Prototypes for Use in Broadbanding

Reflection Amplifiers*

w. J. GETSINGERf, MEMBER, IEEE

Summary—This paper tabulates, as functions of reflection gain

and ripple, the element values of negative-resistance terminated,
prototype, low-pass, lumped-element ladder networks of normalized

impedance and bandwidth. (The values are calculated using known

synthesis methods.) Next, it provides a technique for relating the
characteristics of any actual narrow-band, negative-resistance device

to the value of the prototype susceptive element adjacent to the

negative resistance. When an actual negative-resistance device has

been related to a prototype in this manner, the performance of the

device with one, two or three additional cascaded resonators can be
predicted from given graphs. This allows trade-offs among gain,
ripple, and bandwidth, within limits. Finally, the predicted per-
formance can be used with simple formulas and the table of prototype
element values to design suitable resonators to broadband the actual
amplifier. The tables and techniques of this paper are used success-
fully to broadband tunnel-diode, maser and parametric-amplifier

circuits.
This paper allows the practical engineer to estimate the broad-

banding potential of any given negative-resistance device and pro-

vides him with the proper element values to do so with only a few

very simple calculations required.

INTRODUCTION

I

N RECENT YEARS reflection-type, negative-

resistance amplifiers have received considerable at-

tention. This has come about as a result of the in-

troduction of circulators and of solid-state devices that

are capable of presenting a negative resistance under

the proper conditions. Typically, such an amplifier

might consist of a negative resistance and an associated

resonating structure terminating one port of a circula-

* Received July 7, 1963.
~ Lincoln Laboratory, IMassachusetts Institute of Technology,

Lexington, Mass. Operated >vith support from the U. S. Air Force.

tor. Assuming an ideal circulator to which the load and

generator resistances are matched, the mid-band gain

of the amplifier is determined by the ratio of the load

resistance to the negative resistance. The bandwidth of

the amplifier depends on the values of these resistances

and the slope parameter of the resonating structure. A

considerable improvement in the bandwidth of such an

amplifier can be achieved by appropriately placing one

or more additional resonating structures between the

circulator and the terminals of the negative resistance

(with its own resonating structure). NIatthaei’ has

shown how this can be done for varactor-diode paramet-

ric amplifiers, while Kyhl, McFarlane and Strandbergz

have demonstrated the use of an additional cavity to

broaden the bandwidth of the cavity maser. While these

references consider broadbanding from the point of

view of the specific negative-resistance device employed,

this paper considers the broadbanding of a very simple

prototype device and discusses how to relate this proto-

type to any particular negative-resistance device. The

results are applicable to many kinds of negative-resist-

ance devices, yet only to the extent that they can be

reasonably related to the prototype.

Design relations for broadbanding ideal negative-

resistance devices (capacitance and negative-resistance

in parallel) have previously been given for both maxi-

1 G. L. Matthaei, “A study of the optimum design of wide-band
parametric amplifiers and up-converters, ” IRE TRANS. ON MICRO-
WAVE THEORY AND TECHNIQUES, vol. MTT-9, pp. 23–38; January,
1961.

2 R. L. Kyhl, R. A. McFarlane, and IM. W. P. Strandberg, “Nega-
tive L and C in solid-state masers, ” P~oc. IRE, vol. 50, pp. 1608–
1623; July, 1962.


